Comparing somatic mutation-callers
نویسندگان
چکیده
Background: Somatic mutation-calling based on DNA from matched tumor-normal patient samples is one of the key tasks carried by many cancer genome projects. One such large-scale project is The Cancer Genome Atlas (TCGA), which is now routinely compiling catalogs of somatic mutations from hundreds of paired tumor-normal DNA exome-sequence data. Nonetheless, mutation calling is still very challenging. TCGA benchmark studies revealed that even relatively recent mutation callers from major centers showed substantial discrepancies. Evaluation of the mutation callers or understanding the sources of discrepancies is not straightforward, since for most tumor studies, validation data based on independent whole-exome DNA sequencing is not available, only partial validation data for a selected (ascertained) subset of sites. Results: We have analyzed two sets of mutation-calling data from multiple centers and their partial validation data. Various aspects of the mutation-calling outputs were explored to characterize the discrepancies in detail. To assess the performances of multiple callers, we introduce four approaches utilizing the external sequence data to varying degrees, ranging from having independent DNA-seq pairs, RNA-seq for tumor samples only, the original exome-seq pairs only, or none of those. Conclusions: Our analyses provide guidelines to visualizing and understanding the discrepancies among the outputs from multiple callers. Furthermore, applying the four evaluation approaches to the whole exome data, we illustrate the challenges and highlight the various circumstances that require extra caution in assessing the performances of multiple callers.
منابع مشابه
Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant ...
متن کاملA review of somatic single nucleotide variant calling algorithms for next-generation sequencing data
Detection of somatic mutations holds great potential in cancer treatment and has been a very active research field in the past few years, especially since the breakthrough of the next-generation sequencing technology. A collection of variant calling pipelines have been developed with different underlying models, filters, input data requirements, and targeted applications. This review aims to en...
متن کاملIn-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of ~50X) and ultra-deep targeted sequencing (UDT-Seq, depth of ~370X) data. The four tools returned poor consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and UDT-...
متن کاملConpair: concordance and contamination estimator for matched tumor–normal pairs
MOTIVATION Sequencing of matched tumor and normal samples is the standard study design for reliable detection of somatic alterations. However, even very low levels of cross-sample contamination significantly impact calling of somatic mutations, because contaminant germline variants can be incorrectly interpreted as somatic. There are currently no sequence-only based methods that reliably estima...
متن کاملDetection of Somatic Mutation in Exon 12 of DNA Polymerase β in Ovarian Cancer Tissue Samples
Background: DNA polymerase β (pol β) is a key enzyme of base excision repair pathway. It is a 1-kb gene consisting of 14 exons. Its catalytic part lies between exon 8 and exon 14. Exon 12 has a role in deoxyribonucleotide triphosphate selection for nucleotide transferase activity. Methods: Genomic DNA was isolated from ovarian carcinoma samples. Single strand conformation polymorphism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013